Mixed Finite Elements for Variational Surface Modeling
نویسندگان
چکیده
Many problems in geometric modeling can be described using variational formulations that define the smoothness of the shape and its behavior w.r.t. the posed modeling constraints. For example, high-quality C2 surfaces that obey boundary conditions on positions, tangents and curvatures can be conveniently defined as solutions of high-order geometric PDEs; the advantage of such a formulation is its conceptual representation-independence. In practice, solving high-order problems efficiently and accurately for surfaces approximated by meshes is notoriously difficult. Classical FEM approaches require high-order elements which are complex to construct and expensive to compute. Recent discrete geometric schemes are more efficient, but their convergence properties are hard to analyze, and they often lack a systematic way to impose boundary conditions. In this paper, we present an approach to discretizing common PDEs on meshes using mixed finite elements, where additional variables for the derivatives in the problem are introduced. Such formulations use first-order derivatives only, allowing a discretization with simple linear elements. Various boundary conditions can be naturally discretized in this setting. We formalize continuous region constraints, and show that these seamlessly fit into the mixed framework. We demonstrate mixed FEM in the context of diverse modeling tasks and analyze its effectiveness and convergence behavior.
منابع مشابه
Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملMixed variational multiscale methods and multiscale finite elements
Mixed variational multiscale methods and multiscale finite elements
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملMixed Finite Element Method for Electrowetting on Dielectric with Contact Line Pinning
We present a mixed finite element method for a model of the flow in a Hele-Shaw cell of 2-D fluid droplets surrounded by air driven by surface tension and actuated by an electric field. The application of interest regards a micro-fluidic device called ElectroWetting on Dielectric (EWOD). Our analysis first focuses on the time-discrete (continuous in space) problem and is presented in a mixed va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 29 شماره
صفحات -
تاریخ انتشار 2010